首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32683篇
  免费   2851篇
  国内免费   1459篇
电工技术   1077篇
综合类   1149篇
化学工业   11760篇
金属工艺   2631篇
机械仪表   400篇
建筑科学   397篇
矿业工程   1262篇
能源动力   3731篇
轻工业   1075篇
水利工程   48篇
石油天然气   818篇
武器工业   51篇
无线电   2411篇
一般工业技术   6299篇
冶金工业   3094篇
原子能技术   344篇
自动化技术   446篇
  2024年   58篇
  2023年   719篇
  2022年   886篇
  2021年   1375篇
  2020年   1271篇
  2019年   1236篇
  2018年   1117篇
  2017年   1193篇
  2016年   1125篇
  2015年   1085篇
  2014年   1683篇
  2013年   1896篇
  2012年   2122篇
  2011年   2657篇
  2010年   2044篇
  2009年   1896篇
  2008年   1676篇
  2007年   1932篇
  2006年   1678篇
  2005年   1353篇
  2004年   1191篇
  2003年   1072篇
  2002年   989篇
  2001年   768篇
  2000年   750篇
  1999年   547篇
  1998年   483篇
  1997年   370篇
  1996年   320篇
  1995年   242篇
  1994年   222篇
  1993年   165篇
  1992年   172篇
  1991年   140篇
  1990年   131篇
  1989年   96篇
  1988年   62篇
  1987年   40篇
  1986年   27篇
  1985年   39篇
  1984年   31篇
  1983年   21篇
  1982年   32篇
  1981年   25篇
  1980年   14篇
  1979年   11篇
  1977年   5篇
  1974年   5篇
  1959年   5篇
  1951年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
《Ceramics International》2021,47(19):26598-26619
The growing demands for Li-ion batteries (LIBs) in the electrification revolution, require the development of advanced electrode materials. Recently, intercalating titanium niobium oxide (TNO) anode materials with the general formula of TiNbxO2+2.5x have received lots of attention as an alternative to graphite and Li4Ti5O12 commercial anodes. The desirability of this family of compounds stems from their high theoretical capacities (377–402 mAh/g), high safety, high working voltage, excellent cycling stability, and significant pseudocapacitive behavior. However, the rate performance of TNO-based anodes is poor owing to their low electronic and ionic conductivities. TNO-based composites generally are prepared with two aims of enhancing the conductivity of TNO and achieving a synergic effect between the TNO and the other component of the composite. Compositing with carbon matrices, such as graphene and carbon nanotubes (CNTs) are the most studied strategy for improving the conductivity of TNO and optimizing its high-rate performance. Also, for obtaining anode materials with high capacity and high long-term stability, the composites of TNO with transition metal dichalcogenides (TMDs) materials were proposed in previous literature. In this work, a comprehensive review of the TNO-based composites as the anodes for LIBs is presented which summarizes in detail the main recent literature from their synthesis procedure, optimum synthesis parameters, and the obtained morphology/structure to their electrochemical performance as the LIBs anode. Finally, the research gaps and the future perspective are proposed.  相似文献   
42.
《Ceramics International》2021,47(22):31413-31422
Based on reactive air brazing (RAB), we designed a new type of sealant (Ag–xCuAlO2) for joining 3 mol.% yttria-stabilized zirconia (YSZ) ceramics and AISI 310S stainless steel. The CuAlO2 content affected the wettability of the sealant on the YSZ surface, and the joints had a high shear strength when Ag–2 wt.%CuAlO2, which had a small contact angle on the YSZ substrate, was used as the sealant. In addition, the thickness of the oxide layer was reduced compared to that for the Ag–CuO sealant. The effects of the processing parameters on the microstructure and shear strength of the joints were investigated, and the as-brazed joints reached their highest shear strength (93.7 MPa) when brazed at 1040 °C for 30 min. After high-temperature oxidation at 800 °C for 200 h, the shear strength of the joints remained at 50 MPa, and no apparent change in the microstructure was observed, proving that the joints possessed excellent oxidation resistance.  相似文献   
43.
《Ceramics International》2022,48(24):36401-36409
Catalytic supercritical water oxidation (SCWO) of an organophosphate flame retardant, namely tri-n-butyl phosphate (TNBP) was studied. Firstly, copper oxide nanoparticles (NPs) were synthesized in SCW and their properties were characterized by various analyses. Afterwards, their catalytic performance was investigated under different conditions including reaction temperature (400–500 °C), TNBP volume percentage in the feed (1–4%), oxidant ratio (0–2) and reaction time (50–150 min) based on response surface methodology (RSM). The synthesized CuO NPs had an average particle size of 30 nm with a narrow distribution. According to RSM analysis, the reaction temperature and time are the most significant factors; whereas, the impact of the other factors, especially TNBP volume percentage in the feed, was found to be negligible. Overall, excellent performance was achieved under optimal conditions found by the RSM, which was reaction temperature of 500 °C, TNBP volume percentage of 4%, oxidant ratio of 1.5, and reaction time of 90 min. The TOC removal efficiency as an indicator of TNBP degradation was about 99%. Finally, in vitro cell viability assays for the cytotoxicity evaluation of fresh and SCW-treated solution were applied. The results of MTT showed that SCWO converts TNBP into by-product that did not induce any cytotoxicity.  相似文献   
44.
Bromine-based flow batteries (Br-FBs) are considered one of the most promising energy storage systems due to their features of high energy density and low cost. However, they generally suffer from uncontrolled diffusion of corrosive bromine particularly at high temperatures. That is because the interaction between polybromide anions and the commonly used complexing agent (N–methyl–N–ethyl–pyrrolidinium bromide [MEP]) decreases with increasing temperatures, which causes serious self-discharge and capacity fade. Herein, a novel bromine complexing agent, 1–ethyl–2–methyl–pyridinium bromide (BCA), is introduced in Br-FBs to solve the above problems. It is proven that BCA can combine with polybromide anions very well even at a high temperature of 60 °C. Moreover, the BCA contributes to decreasing the electrochemical polarization of Br/Br2 couple, which in turn improves their power density. As a result, a zinc–bromine flow battery with BCA as the complexing agent can achieve a high energy efficiency of 84% at 40 mA cm−2, even at high temperature of 60 °C and it can stably run for more than 400 cycles without obvious performance decay. This paper provides an effective complexing agent to enable a wide temperature range Br-FB.  相似文献   
45.
The paper describes the development status of Sunfire's reversible solid oxide cell (RSOC) technology. Here, Sunfire is a pioneer in the field of high-temperature electrolysers (HTE) for renewable hydrogen production which can be operated as a fuel cell for power generation in a reverse mode. The maturity of the technology is improved stepwise so that first applications in the field of hydrogen production for industry and electricity storage can be tackled. Three application examples where larger scale prototype has been installed will be discussed: 1) A power-to-power electricity storage based on hydrogen, 2) a RSOC unit that is installed in an iron and steel works, and 3) a pressurized SOEC prototype which will be integrated with a methanation unit. Results show the potentials of the technology in connection with fluctuating renewable energy sources.  相似文献   
46.
This work demonstrates a facile Nb2O5-decorated electrocatalyst to prepare cost-effective Ni–Fe–P–Nb2O5/NF and compared HER & OER performance in alkaline media. The prepared electrocatalyst presented an outstanding electrocatalytic performance towards hydrogen evolution reaction, which required a quite low overpotential of 39.05 mV at the current density of ?10 mA cm?2 in 1 M KOH electrolyte. Moreover, the Ni–Fe–P–Nb2O5/NF catalyst also has excellent oxygen evolution efficiency, which needs only 322 mV to reach the current density of 50 mA cm?2. Furthermore, its electrocatalytic performance towards overall water splitting worked as both cathode and anode achieved a quite low potential of 1.56 V (10 mA cm?2).  相似文献   
47.
The chromium (Cr) evaporation behavior of several different types of iron (Fe)-based AFA alloys and benchmark Cr2O3-forming Fe-based 310 and Ni-based 625 alloys was investigated for 500 h exposures at 800 °C to 900 °C in air with 10% H2O. The Cr evaporation rates from alumina-forming austenitic (AFA) alloys were ~5 to 35 times lower than that of the Cr2O3-forming alloys depending on alloy and temperature. The Cr evaporation behavior was correlated with extensive characterization of the chemistry and microstructure of the oxide scales, which also revealed a degree of quartz tube Si contamination during the test. Long-term oxidation kinetics were also assessed at 800 to 1000 °C for up to 10,000 h in air with 10% H2O to provide further guidance for SOFC BOP component alloy selection.  相似文献   
48.
Bismuth doped La2-xBixNiO4+δ (x = 0, 0.02 and 0.04) oxides are investigated as SOFC cathodes. The effects of Bi doping on the phase structure, thermal expansion, electrical conduction behavior as well as electrochemical performance are studied. All the samples exist as a tetragonal Ruddlesden-Popper structure. Bi-doped LBNO-0.02 and LBNO-0.04 have good chemical and thermal compatibility with LSGM electrolyte. The average TEC over 20–900°С was 13.4 × 10?6 and 14.2 × 10?6 K?1 for LBNO-0.02 and LBNO-0.04, respectively. The electrical conductivity was decreasing with the rise of Bi doping content. EIS measurement indicates Bi doping can decrease the ASR values. At 750 °C, the obtained ASR for LBNO-0.04 is 0.18 Ωcm2, which is 56% lower than that of the sample without Bi doping, suggesting Bi doping is beneficial to the electrochemical catalytic activity of LBNO cathodes.  相似文献   
49.
《Ceramics International》2022,48(8):11304-11312
Li13.9Sr0.1Zn(GeO4+δ)4 (LSZG) materials can exhibit proton conduction by Li+/H+ ion exchange in hydrogen atmosphere. It can be used in solid oxide fuel cells (SOFCs) as an electrolyte. In this study, In3+ doped LSZG powders are synthesized by sol-gel method. X-ray diffraction, scanning electron microscopy, thermal gravimetric analyzer, and electrochemical impedance spectroscopy are used to investigate the effects of In doping on LSZG. All Li13.9-xInxSr0.1Zn(GeO4+δ)4 (LISZG, 0 ≤ x ≤ 0.3) ceramics exhibit the same phase with LSZG. The dopant of In promotes the sintering activity and Li+/H+ ion exchange rate of LSZG. The optimum doping of In is x = 0.2. At 600 °C, Li13.7In0.2Sr0.1Zn(GeO4+δ)4 (0.2LISZG) shows a proton conductivity of 0.094 S/cm under 0.9 V direct current bias voltage. In addition, the single cell based on 0.2LISZG electrolyte is prepared, and it has been demonstrated that the practical utilization of 0.2LISZG in IT-SOFCs is feasible.  相似文献   
50.
Oxygen reduction reaction(ORR) plays a critical role in many energy conversion and storage processes.Therein, a comparative study of the electrocatalytic activity for ORR in 0.1 mol/L KOH solution was conducted using layered perovskite-like LaSr_3 Fe_3 O_(10) and LaSr3 Fe_3 O_(10)-graphene oxide(GO) composite as electrodes. Linear sweep voltammetry(LSV) results show that the LaSr3 Fe_3 O_(10)-GO hybrid exhibits higher current density, a more positive onset potential(-0.15 V vs. Hg/HgO) in comparison with LaSr_3 Fe_3 O_(10).The value of the overall transferred electrons for both catalysts implies a dominant two electron process for ORR. Both catalysts under alkalic conditions exhibit a two-step Tafel slope, suggesting a change in the reaction mechanism for ORR. The composite electrode exhibits a higher ORR current density, but inferior durability performances in relative to the LaSr_3 Fe_3 O_(10) electrode.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号